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ABSTRACT

In this paper, a new trend is introduced into the field of multi-criteria location problems. We combine the robustness
approach using the minmax regret criterion together with Pareto-optimality. We consider the multi-criteria squared
Euclidean minisum location problem which consists of simultaneously minimizing a number of weighted sum-
distance functions and the set of Pareto-optimal locations as its solution concept. The Pareto-optimal solutions for
the set of robust locations with respect to the original weighted sum-distance functions is completely characterized.
These Pareto-optimal solutions have both the properties of stability and non-domination which are required in
robust and multi-criteria programming. Copyright # 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last few years a trend has become very
important in the field of optimization: robust
optimization. There are different reasons for
considering robustness and possibly the most
important one is that it helps to consider
uncertainty. Uncertainty affects a great variety of
decision processes such as cost or production
processes, investment decisions, inventory man-
agement, scheduling or demand forecasting among
others.

There is a wide range of criteria for handling
decisions for uncertainty models. One can mention
the deterministic optimization approach, the sto-
chastic optimization and the robust approach. In
the first one, the decision maker ‘chooses’ one
instance of the input data and then solves the
model for this specific choice. In the second one,
some kind of information about the potential
occurrences of the data in the future is estimated

and the model will attempt to generate a solution
that maximizes (or minimizes) an expected effec-
tiveness criterion. The main drawback of these two
approaches is that the input data of both lead to a
whole range of feasible solutions, so that either the
most probable (likely) or the expected data
scenario does not cover all of them.

In the robust approach the aim is to produce a
solution that behaves acceptably well under any
likely input data. Among the different criteria that
can be used to manage robustness we will use the
minmax regret. It consists of minimizing the
‘regret’ or difference between the objective value
of a feasible solution and the optimal solution that
would have been chosen if the decision-maker
would have known the actual input data (see
Kouvelis and Yu, 1997, for further details on this
kind of analysis).

In this paper, we consider the single facility
location problem under the viewpoint of uncer-
tainty. In this framework, the uncertainty is driven
by the different location scenarios that may occur.
We will consider that it is agreed on that the
quality of a location will be given by weighted-sum
objective functions. The uncertainty is given by
assigning each existing facility a set of weights
representing a different scenario. In addition, we
will assume that different decision-makers, each
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having different scenarios to compare, interact.
Since facility location decisions usually involve a
serious amount of money it is reasonable to
assume that not a single person but a group of
(equally ranked) persons has to decide. In this
situation, the proposed solution has to be a
compromise between the involved decision-ma-
kers. To fulfil this requisite we propose the Pareto
solutions with respect to the robust criteria
controlled by the decision-makers. The main goal
of this paper is to give a complete geometrical
description of the whole set of Pareto-optimal
solutions with respect to several minmax regret
criteria. These solutions are: (1) robust because
they result from the regret criterion and (2) Pareto,
therefore they are not dominated componentwise.

This model also has another interpretation. It
can be seen as an intermediate situation between
multifacility and single facility location, which
consists of locating k different servers based at a
unique centre and only once. Nevertheless, the
determination of such a point cannot be described
by the classical criteria (sum, maximum, etc.)
through aggregation because each server has its
own interest and thus its own scenario to be
considered. Each server wants its objective value
to be as close as possible to its optimal value.
Hence, this model leads to a problem where we
look for a location minimizing the maximum
deviation of each objective regarding the optimal
objective value for each one of the servers, i.e.
minmax regret with respect to the different
scenarios:

min
x

max
w2fw1;...;wkg

½ fwðxÞ � fwðxðwÞÞ�

where w is the set of parameters which specifies
a certain scenario, fw1; . . . ;wkg are the different
scenarios to be considered, fw is the objective
function under the scenario w and xðwÞ is an
optimal solution (minimum) of the problem with
objective function fw.

Furthermore, it may occur that each server
behaves differently in several time periods. Thus,
we also have different scenarios to consider in each
time period. Since only one location is allowed for
all the periods each server may consider its own
problem as a multi-criteria problem. The server
must find those solutions not dominated in the
objective values with respect to the time horizon
since nobody wants a locational decision which
can be improved in all time periods under
consideration simultaneously.

Combining both features we obtain again the
multi-criteria minmax regret. This methodology
could be naturally applied to the real-world
situation described in the report on ‘Stationing of
Rescue helicopters in Southern Tirol’ (Ehrgott,
1998). There, the case of three helicopters to be
based at a common location is considered and
different strategies are used.

In order to obtain a description of the solution
set we first solve the bicriteria problem giving a
polynomial time algorithm to obtain the bicriteria
Pareto chain. Then, we reduce the Q-criterion
problem to the determination of all the Pareto-
optimal solutions for any subset of 3-criterion.
Finally, we show how to characterize these sets
using only bicriteria Pareto-solutions chains.

The paper is organized as follows. In Section 2
we introduce the single objective minmax regret
location problem and state an equivalent easier
formulation. The geometrical structure of the
optimal solution set of the single objective minmax
regret location problem is analysed in Section 3. In
Section 4 we characterize the set of Pareto
solutions of the bicriteria minmax regret location
problem and we formulate an algorithm to
compute them. Section 5 presents a complete
description of the set of Pareto solutions in the
Q-criteria case using convex analysis and the
results of the previous section. The paper ends
with some conclusions and an outlook to further
research.

2. THE MODEL

Let A be a denumerable set of existing facilities
andW a finite set of weight vectors w 2 RjAj. Each
w 2W satisfies

P
a2A wa ¼ 1 and wa50;8a 2 A. In

other words, w 2W represents a location scenario
for a decision maker (DM) while wa is the
importance given to the existing facility a 2 A in
the scenario w. We assume that distances are
measured by the squared Euclidean norm. Several
examples of such a quadratic formulation are the
problems of locating hospitals, fire stations, police
stations, and other emergency service agencies. In
this cases, the damage incurred increases more
than proportionally with the waited time for
intervention, hence with the distance travelled
(see White, 1971; Ohsawa 1999). In addition, since
the quadratic models can be considered as an
approximation to the Euclidean distance cases,
such a quadratic formulation is justified (see
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McHose, 1961). Therefore, our minmax regret
problem for a single DM is

min
x2R2

max
w2W

X
a2A

wajjx� ajj22 �
X
a2A

wajjxðwÞ � ajj22

" #
ð1Þ

where xðwÞ is the optimal solution of problem (2):

min
x

X
a2A

wajjx� ajj22 ð2Þ

It is well-known that xðwÞ ¼
P
a2A waa=

P
b2A wb.

Besides, since we have taken normalized weights
xðwÞ ¼

P
a2A waa. This fact leads us to reformulate

problem (1) as

min
x2R2

max
w2W

X
a2A

wajjx� ajj22 �
X
a2A

wajj
X
b2A

wbb� ajj22

" #

ð3Þ

We can simplify this formulation even more by
using properties of the scalar product.

Lemma 2.1

Problem (3) is equivalent to

min
x2R2

max
w2W

FwðxÞ :¼ kx� xðwÞk22 ð4Þ

Proof
The objective function of problem (3) can be
rewritten using the scalar product h�; �i as

X
a2A

wajjx� ajj22 �
X
a2A

wajj
X
b2A

wbb� ajj22

¼
X
a2A

wa hx� a;x� ai � hxðwÞ�a; xðwÞ � ai½ �

¼
X
a2A

wa hx;xi � 2hx; ai½

�hxðwÞ;xðwÞi þ 2hxðwÞ; ai�

¼ hx;xi � 2hx;xðwÞi þ hxðwÞ;xðwÞi

¼ jjx� xðwÞjj22 ð5Þ

Therefore, both problems are equivalent. &

In the following we denote by X * ðWÞ the
optimal solution of problem (4).

3. THE SINGLE OBJECTIVE REGRET
LOCATION PROBLEM

We begin this section by studying some properties
of the objective function of problem (4):

RW ðxÞ :¼ max
w2W

FwðxÞ ð6Þ

Proposition 3.1

The function RW ðxÞ is a strictly convex function.

The proof is straightforward.
The solution of problem (4) can be found by

solving the equivalent convex problem with linear
objective

min z

s:t: jjx� xðwÞjj22 � z40 8w 2W

z50; x 2 R2

ð7Þ

Since (7) is a convex problem, we can apply the
Kuhn–Tucker conditions and an optimal solution
can be derived by solving the system:

1�
P
w2W lwP

w2W lwðx� xðwÞÞ

lwðjjx� xðwÞjj22 � zÞ 8w 2W

2
64

3
75 ¼ 0

, X* ðWÞ ¼

P
w2JðX * ðWÞÞ lwxðwÞP
w2JðX * ðWÞÞ lw

ð8Þ

for some choice of flwgw2W and JðX* ðWÞÞ
¼ fw 2W : jjX * ðWÞ � xðwÞjj22 ¼ maxm2W jjX * ðWÞ
� xðmÞjj22g.

It is worth noting that problem (4) is a usual
minmax location problem with respect to the new
set of existing locations fxðwÞ : w 2Wg. Therefore,
there are also specific methods in the literature to
solve this problem such as the well-known
Elzinga–Hearn algorithm (Elzinga and Hearn,
1972).

The max operator induces a cell subdivision in
the decision space of the problem. For each m 2W
consider the set:

Cm ¼ fx 2 R2 : FmðxÞ5FwðxÞ 8w 2Wg ð9Þ

The sets Cm are the farthest-point Voronoi
diagrams with respect to the functions Fm. See
Okabe et al. (1992) for algorithms to compute
farthest point Voronoi diagrams. Therefore, these
sets are important because within Cm the objective
function RW ðxÞ of problem (4) coincides with
FmðxÞ. Hence, provided that the geometry of these
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sets is easy, problem (4) reduces to solving a finite
number of classical covering circle problems, one
on each of these regions. The following result
proves that these sets are polyhedra, thus, easy to
handle.

Proposition 3.2

Cm is a polyhedron for any m 2W .

Proof
The set Cm is described by the following family of
inequalities FmðxÞ � FwðxÞ50 8w 2W . Now, we
have that

FmðxÞ � FwðxÞ ¼ hx� xðmÞ;x� xðmÞi

� hx� xðwÞ;x� xðwÞi

¼ 2hx;xðwÞ � xðmÞi þ hxðmÞ;xðmÞi

� hxðwÞ;xðwÞi

which is a linear function in x. Therefore, Cm is a
region bounded by linear inequalities. Hence, it is
a polyhedron. &

The following result characterizes the optimal
solution of problem (4) within the region
Cm. Let us denote by X * ðW ;mÞ the optimal
solution within Cm and let JðmÞ :¼ fw 2W :
FmðX* ðW ;mÞÞ � FwðX* ðW ;mÞÞ ¼ 0g.

Lemma 3.1

The explicit form of the optimal solution of
problem (4) within Cm is given by the following
statements:

1. IfX* ðW ; mÞ belongs to the interior of Cm then
X* ðW ; mÞ ¼ xðmÞ.

2. If X* ðW ; mÞ does not belong to the interior of
Cm then

X * ðW ;mÞ ¼ xðmÞ þ
X
w2JðmÞ

lwðxðwÞ � xðmÞÞ

for some lw50

Proof
Within Cm, problem (4) can be described as

min
x¼ðx1;x2Þ 2R

2
hx� xðmÞ;x� xðmÞi ð10Þ

s:t: 2hx;xðmÞ � xðwÞi4 jjxðmÞjj22 � jjxðwÞjj22
8w 2W ð11Þ

Then, an optimal solution X * ðW ;mÞ within this
region can be obtained using the Kuhn–Tucker
conditions:

ðx� xðmÞÞ þ
P
w2W lwðxðmÞ � xðwÞÞ ¼ 0

lwðhx;xðmÞ � xðwÞi � jjxðmÞjj22 þ jjxðwÞjj22Þ ¼ 0

8w 2W

lw50 8w 2W

These conditions lead us to the explicit form of the
optimal solution.

1. IfX * ðW ;mÞ belongs to the interior of Cm then
only lm 6¼ 0. Therefore, X * ðW ;mÞ ¼ xðmÞ.

Figure 1. Illustration of Example 3.1. The eight small
squares represent the existing facilities. The two middle
sized points indicate the optimal solutions for the weight
sets w1 and w2, respectively. The largest point represents
the optimal solution X* ðWÞ for the two weight
scenarios and the radius of the two circles illustrate the
corresponding optimal objective value.
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2. If X * ðW ;mÞ does not belong to the interior
of Cm, let us denote by JðmÞ :¼ fw 2W :
FmðX* ðW ; mÞÞ � FwðX* ðW ; mÞÞ ¼ 0g. In this
case, one has

X * ðW ;mÞ ¼ xðmÞ þ
X
w2JðmÞ

lwðxðwÞ � xðmÞÞ

for some lw50: &

Example 3.1

We are given 8 existing facilities a1 ¼ ð1; 11Þ,
a2 ¼ ð1; 9Þ; a3 ¼ ð0; 10Þ; a4 ¼ ð2; 10Þ, a5 ¼ ð1; 6Þ;
a6 ¼ ð1; 4Þ; a7 ¼ ð0; 5Þ and a8 ¼ ð2; 5Þ.
We have two sets of weights w1 ¼ ð1; 1; 1; 1; 0; 0;

0; 0Þ and w2 ¼ ð0; 0; 0; 0; 1; 1; 1; 1Þ, W ¼ fw1;w2g.
For the sake of readability we do not normalize
the weight vectors. First, we compute the optimal
solution for each weight set byP
aiw

1
iP

w1
i

¼
ð4; 40Þ

4
¼ ð1; 10Þ ¼ xðw1Þ

andP
aiw

2
iP

w2
i

¼
ð4; 20Þ

4
¼ ð1; 5Þ ¼ xðw2Þ

Now we find X * ðWÞ by computing the midpoint
of the segment ½ð1; 10Þ; ð1; 5Þ� which is ð1; 7:5Þ. The
results are shown in Figure 1.

4. THE BICRITERIA REGRET LOCATION
PROBLEM

Consider two decision makers each one of them
having a set of different scenarios and wishing to
make a decision looking for a compromise among
themselves. Each DM has a set of weights Wk,
k ¼ 1; 2, and the bicriteria problem is

min
x2R2

max
w12W1

jjx� xðw1Þjj22; max
w22W2

jjx� xðw2Þjj22

� �
ð12Þ

Let us denote by X *
par W

1;W2

 �

the Pareto-
optimal solution set of problem (12), by
BI Wk


 �
the set of orthogonal bisectors of

the points xðwkiÞ; xðwkjÞ for all wki 6¼ wkj 2Wk

with k ¼ 1; 2 and by SEG W1;W2

 �

:¼S
w12W1;w22W2 ½xðw1Þ;xðw2Þ�, i.e. the set of line

segments joining the points xðw1Þ with xðw2Þ
for any w1 2W1 and w2 2W2.

Let CðW1;W2Þ be the superposition (inter-
section) of the two cell subdivisions CðW1Þ and
CðW2Þ which were defined in (9). This is to say,

CðW1;W2Þ ¼ fCw1;w2 :¼ Cw1 \ Cw2 :

w1 2W1; w2 2W2g

Within a set Cw1;w2 , problem (12) reduces to

min
x2C

w1 ;w2

fjjx� xðw1Þjj22; jjx� xðw
2Þjj22g

Since the squared Euclidean distance is an
increasing one-to-one transformation of the Eu-
clidean distance, the Pareto-optimal solution set of
our problem coincides with the Pareto-optimal
solution set of the Euclidean point-objective
location problem (with only two points). For this
problem it is known (see Carrizosa et al., 1993)
that its set of Pareto-optimal solutions consists of
the orthogonal projection of the convex hull (line
segment for the case of only two points) of the
existing facilities onto the constraint set. Let us
denote by X *

par w
1;w2;Cw1;w2


 �
the set of Pareto-

optimal solutions of problem (12) in Cw1;w2 .
Therefore, using the mentioned equivalence we
conclude that

X*
par w

1;w2;Cw1;w2


 �
¼ projC

w1 ;w2
ð½xðw1Þ; xðw2Þ�Þ ð13Þ

where projX ðaÞ is the orthogonal projection of
a onto X . It is worth noting that some parts of the
projection may coincide with the line segment
when this intersects the considered region. There-
fore, all the Pareto-optimal solutions of problem
(12) are on the boundary of Cw1;w2 or on ½xðw1Þ;
xðw2Þ� \ Cw1;w2 as shown in the next lemma.

Lemma 4.1

X*
par W

1;W2

 �

� BI W1

 �

[BI W2

 �

[SEG W1;W2

 �

:

Proof
Since CðW1;W2Þ is a subdivision of R2 one has
that

X*
par W

1;W2

 �

�
[

w12W1; w22W2

X *
par w

1;w2;Cw1;w2


 �
ð14Þ

Then, just note that by (13):

X*
par w

1;w2;Cw1;w2


 �
� BI W1


 �
[BI W2


 �
[SEG W1;W2


 �
ð15Þ

Combining (14) and (15) the result follows. &
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As a consequence of this result we get,

Lemma 4.2

X *
parðW1;W2Þ is a connected polygonal chain on

BIðW1Þ [BIðW2Þ [SEGðW1;W2Þ with end-
points at X* ðW1Þ and X* ðW2Þ.

The proof is a straightforward consequence of
Lemma 4.1 and the results on connectivity of
Pareto-solution sets for convex multiobjective
programming (see Warburton, 1983).

Applying this result we can develop an algo-
rithm for solving problem (12). In order to do
that, we will need to check whether or not a
particular point x is Pareto-optimal. The function
conditionðxÞ which takes the values true or false
performs this operation. This function is defined in
the following lemma. Let us denote by intðAÞ and
@ðAÞ the interior and the boundary of the set A,
respectively.

Lemma 4.3

1. x 2 intðCw1;w2Þ for some w1 2W1 and
w2 2W2.

conditionðxÞ ¼

true if
x� xðw1Þ

jjx� xðw1Þjj2

¼ �
x� xðw2Þ

jjx� xðw2Þjj2
false otherwise

8>>>>><
>>>>>:

2. x 2 @ðCw1;w2 Þ for some w1 2W1 and w2 2W2.
Let JkðxÞ :¼ fl 2Wk : Fwk ðxÞ ¼ jjx� xðlÞjj22g
for k ¼ 1; 2

conditionðxÞ ¼

true if

0 2 conv
S

l2J1ðxÞ ðx� xðlÞÞ[
n

S
m2J2ðxÞ ðx� xðmÞÞg

false otherwise

8>>>>><
>>>>>:

Proof
Case 1. According to (13), x 2 intðCw1;w2Þ is a

Pareto-solution if it belongs to the line segment
½xðw1Þ;xðw2Þ�. This also means that x is an
unconstrained Pareto solution and therefore, the
gradients of the two-objective functions must be

opposite. This fact proves the expression of
condition(x) in Case 1.

Case 2. First note that since the objective
functions are strictly convex the Pareto-solutions
coincide with weak Pareto-solutions (see e.g.
White, 1982). Therefore, x 2 @ðCw1;w2Þ is a Pareto-
solution if and only if it fulfils the Karush–Kuhn–
Tucker weak Pareto-optimality condition for non-
differentiable convex functions: ‘‘zero belongs to
convex hull of the union of the subdifferential sets
of the two objective functions at x’’ (see e.g.
Miettinen, 1999). On the boundary, the objective
functions are the pointwise maximum of squared
Euclidean distances. The subdifferential set of the
maximum is the convex hull of the subdifferential
sets of those functions achieving the maximum at
the considered point x. This is exactly the
expression of the function in Case 2. &

Algorithm 4.1

Input:
1. Demand points A� R2.
2. Weight sets W1 ¼ ðw1

aÞa2A and W
2 ¼ ðw2

aÞa2A.

Output :
1. X *

parðW1;W2Þ .

Steps:
1. Computation of the planar graph generated

by CðW1;W2Þ [SEGðW1;W2Þ.
2. Compute the optimal solutions of the single

criterion problems: X * ðW1Þ and X * ðW2Þ.
3. IF X * ðW1Þ ¼ X* ðW2Þ
4. THEN ($ trivial case $)
5. X *

parðW1;W2Þ :¼ X * ðW1Þ
6. ELSE ($ non trivial case $)
7. X *

parðW1;W2Þ :¼ X * ðW1Þ [X* ðW2Þ
8. Choose x :¼ X* ðW1Þ.
9. WHILE x 6¼ X* ðW2Þ DO
10. BEGIN
11. REPEAT
12. Choose y 2 AdjðxÞ ð$AdjðxÞ is the

set of adjacent vertices to x$)
13. UNTIL condition(y)
14. X *

parðW1;W2Þ :¼
X *

parðW1;W2Þ [ xy
15. x :¼ y
16. END

If we analyse the complexity, we first recognize
that the optimal solutions for each w 2Wi;

F. R. FERNÁNDEZ ET AL.196
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i ¼ 1; 2, can be computed with (8) in linear time
with respect to jwj. Also, the optimal solutions
X * ðWiÞ; i ¼ 1; 2, for a single DM can be com-
puted in linear time with respect to jWij
(see Megiddo, 1982). For the computation of
X *

parðW1;W2Þ we need to determine the planar
graph induced by CðW1;W2Þ and SEGðW1;W2Þ.
Using a scan-line-principle (Bentley and Ottmann,
1979) proved that the computation of a planar
graph induced by n line segments in the plane, can
be obtained in Oððnþ sÞlog nÞ time, where s is the
number of intersection points of the line segments.
In this case, it means that this process can be done
in OðK2 logKÞ, where K ¼ maxðjW1j; jW2jÞ. The
evaluation of condition can be done in linear time
with respect to K (see Frenk et al., l996). Since we
have not more than OðK2Þ vertices in our planar
graph the total complexity is OðK3 logKÞ.

Example 4.1

We use the data of Example 3.1 and add 8
additional existing facilities a9 ¼ ð8; 9Þ; a10 ¼
ð8; 7Þ; a11 ¼ ð7; 8Þ; a12 ¼ ð9; 8Þ; a13 ¼ ð10; 2Þ, a14
¼ ð10; 0Þ; a15 ¼ ð9; 1Þ and a16 ¼ ð11; 1Þ.

Now we have two decision makers, each of them
having two sets of weights:

W1 ¼ fw11;w12g with

* w11 ¼ ð1; 1; 1; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ and
* w12 ¼ ð0; 0; 0; 0; 1; 1; 1; 1; 0; 0; 0; 0; 0; 0; 0; 0Þ

W2 ¼ fw21;w22g with

* w21 ¼ ð0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1; 0; 0; 0; 0Þ and
* w22 ¼ ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1Þ.

Analogous to Example 3.1 we get the optimal
single criterion solutions xðw11Þ ¼ ð1; 10Þ;
xðw12Þ ¼ ð1; 5Þ, X* ðW1Þ ¼ ð1; 7:5Þ; xðw21Þ ¼ ð8; 8Þ;
xðw22Þ ¼ ð10; 1Þ and X * ðW2Þ ¼ ð9; 4:5Þ. Next, we
compute the set of Pareto solutions X*

parðW1;W2Þ
starting at X * ðW1Þ (see also Figure 2). Accord-
ing to Algorithm 4.1 we test an adjacent vertex
to X * ðW1Þ in the planar graph induced by
CðW1;W2Þ. The only choice is the point
P1 ¼ ð3:52; 7:5Þ. We have Case 2 of Lemma 4.3
and therefore we have to check whether

0 2 conv
[

l2J1ðxÞ

ðP1 � xðlÞÞ [
[

m2J2ðxÞ

ðP1 � xðmÞÞ

8<
:

9=
;

We see that P1 is on the bisector between xðw11Þ
and xðw12Þ. Therefore, J1ðP1Þ ¼ fw11;w12g and
J2ðP1Þ ¼ fw22g. Since P1 is on the line segment
connecting xðw11Þ and xðw22Þ we know that we
have 0 already in the convex hull of P1 � xðw11Þ
and P1 � xðw22Þ. Therefore, P1 belongs to
X*

parðW1;W2Þ. If we would continue on the
bisector between xðw11Þ and xðw12Þ, we would still
have the same sets J1 and J2 but we would need
xðw21Þ for the convex hull construction. This
means that there is no Pareto solution in this
direction and we have to continue with point
P2 ¼ ð4:5; 6:5Þ. Now we are in the interior of
Cw11;w22 and we have to test Case 1 of Lemma 4.3
which is fulfilled since P2 is also on the line
segment joining xðw11Þ and xðw22Þ. Therefore, P2 is
in the set of Pareto solutions and the unique
adjacent vertex is P3 from where we have as an
adjacent vertex already X* ðW2Þ and we are done.

5. THE MULTI-CRITERIA REGRET
LOCATION PROBLEM

In this section, we turn to the Q-criteria case and
we will develop an efficient algorithm for comput-
ing X*

parðW1; . . . ;WQÞ using the results of the
bicriteria case. In order to obtain a geometrical
characterization of a Pareto solution we use
convex analysis.

Figure 2. Illustration of Example 4:2. The bold part
consitutes the set of Pareto solutions.

ROBUSTNESS IN THE PARETO-SOLUTIONS 197

Copyright # 2001 John Wiley & Sons, Ltd. J. Multi-Crit. Decis. Anal. 10: 191–203 (2001)



For a multiobjective problem let X *
w�par denote

the set of weak-Pareto solutions. Using the level sets
and level curves (Hamacher and Nickel, 1996)
obtained that a point x 2 R2 is a weak Pareto
solution if and only if the following statement holds:

\Q
q¼1

L5ðRWq ;RWq ðxÞÞ ¼ |

Moreover, if the objective functions are strictly
convex, White (1982) proved that X*

par ¼ X*
w�par.

First, we start giving the general result for the
Q-criteria case which reduces the problem to the
computation of the 3-criterion solution sets. This
result motivates the technical details needed to
characterize the three objectives case.

Theorem 5.1

X *
parðW1;W2; . . . ;WQÞ ¼

[
i;j;k

X*
w�parðWi;Wj ;WkÞ

Proof
Since the objective functions RWi are strictly
convex, it follows that X*

parðW1; . . . ;WQÞ ¼
X *
w�parðW1; . . . ;WQÞ. Then, x 2 X*

w�parðW1; . . . ;
WQÞ iff

T
14i4Q L5ðRWi ;RWi ðxÞÞ ¼ |. This inter-

section is empty if and only if there exist i; j; k 2 Q
such that L5ðRWi ;RWi ðxÞÞ \ L5ðRWj ;RWj ðxÞÞ \
L5ðRWk ;RWk ðxÞÞ ¼ | (see Helly’s Theorem; Rock-
afellar (1970)) and this is equivalent to
x 2 X*

w�parðWi;Wj ;WkÞ. Since in any case[
i;j;k
i 6¼j 6¼k

X *
w�parðWi;Wj ;WkÞ

� X*
w�parðW1;W2; . . . ;WQÞ

the proof is complete. &

For more results on the reduction of criteria, in
general, multi-criteria problems the reader is
referred to Ehrgott and Nickel (2000) and refer-
ences therein.

Now we proceed with the 3-criterion case. In
order to do that some notation is necessary. For
our function RW ðxÞ the level and strict level sets
for a value z 2 R are given by

L4ðRW ; zÞ :¼ fx 2 Rn : RW ðxÞ4zg

and

L5ðRW ; zÞ :¼ fx 2 Rn : RW ðxÞ5zg

In the same way, we define the complement of the
strict level set as

L5ðRW ; zÞ :¼ fx 2 Rn : RW ðxÞ5zg

and the level curve for a value z 2 R is given by

L¼ðRW ; zÞ :¼ fx 2 R2 : RW ðxÞ ¼ zg

The tangent cone TBðxÞ to the convex set B at
point x is

TBðxÞ :¼ coneðB� xÞ

where for any set S, %SS stands for the topological
closure of S.

Let us denote

I4ij ðxÞ :¼ L4ðRWi ;RWi ðxÞÞ \ L4ðRWj ;RWj ðxÞÞ

I5ij ðxÞ :¼ L5ðRWi ;RWi ðxÞÞ \ L5ðRWj ;RWj ðxÞÞ

i 6¼ j; i; j ¼ 1; 2; 3

Recently, Rodr!ııguez-Ch!ııa (1998) proved geome-
trical characterizations of Pareto-optimal solu-
tions for general location problems. The
following results are consequences of this work.
We will obtain a geometrical description of the
3-criterion weak-Pareto solution set. To this end,
several technical lemmas are needed. In the
following, the relative interior and the relative
boundary of a convex set is denoted ri and rbd,
respectively.

Lemma 5.1

Whenever the statements

(a)
T3
i¼1 L4ðRWi ;RWi ðxÞÞ ¼ fxg,

(b) I5ij ðxÞ 6¼ | 8i 6¼ j 2 f1; 2; 3g

hold, then

(i) xþ
T3
i¼1 TL4ðRWi ;RWi ðxÞÞðxÞ ¼ fxg.

(ii) X*
w�parðWi;WjÞ \ ðx� ðTL4ðRWi ;RWi ðxÞÞðxÞ

\TL4ðRWj ;RWj ðxÞÞðxÞÞÞ ¼ |; 8i 6¼ j 2 f1; 2; 3g

Proof
The first assertion is equivalent to prove thatT3
i¼1 TL4ðRWi ;RWi ðxÞÞðxÞ ¼ f0g. We prove this fact by

contradiction. Assume that there exists y 6¼ 0 such
that y 2

T3
i¼1 TL4ðRWi ;RWi ðxÞÞðxÞ, then four cases may

occur:

1. y 2 riðTL4ðRWi ;RWi ðxÞÞðxÞÞ; i ¼ 1; 2; 3 (see
Figure 3).
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Since, y 2
T3
i¼1 riðTL4ðRWi ;RWi ðxÞÞðxÞÞ, there

exists li > 0 such that xþ liy 2 L4ðRWi ;
RWi ðxÞÞ for i ¼ 1; 2; 3. We define
l :¼ minfl1; l2; l3g > 0. Using x 2T3
i¼1 L4ðRWi ;RWi ðxÞÞ and the convexity

of
T3
i¼1 L4ðRWi ;RWi ðxÞÞ we have that

xþ ly 2
T3
i¼1 L4ðRWi ;RWi ðxÞÞ, and this

contradicts (a).
2. y 2 riðTL4ðRWi ;RWi ðxÞÞðxÞÞ, i ¼ 1; 2 and y =2

riðTL4ðR
W3 ;RW3 ðxÞÞðxÞÞ.

Then, one of the facets of TL4ðR
W3 ;RW3 ðxÞÞðxÞ

belongs to
T2
i¼1 riðTL4ðRWi ;RWi ðxÞÞðxÞÞ. Hence,

we have that
T3
i¼1 riðTL4ðRWi ;RWi ðxÞÞðxÞÞ 6¼ |

and we are in Case 1.
3. y 2 riðTL4ðR

W1 ;RW1 ðxÞÞðxÞÞ and y =2
riðTL4ðRWi ;RWi ðxÞÞðxÞÞ; i ¼ 2; 3. Then, one
of the facets of

T3
i¼2 TL4ðRWi ;RWi ðxÞÞðxÞ belongs

to riðTL4ðR
W1 ;RW1 ðxÞÞðxÞÞ.

Moreover, I523 ðxÞ 6¼ | then

ri \
3

i¼2
TL4ðRWi ;RWi ðxÞÞðxÞ

� �

¼ \
3

i¼2
ri TL4ðRWi ;RWi ðxÞÞðxÞ
� �

6¼ |:

This implies that

\
3

i¼2
ri TL4ðRWi ;RWi ðxÞÞðxÞ
� �

\ ri TL4ðR
W3 ;RW3 ðxÞÞðxÞ

� �
6¼ |

and we are again in Case 1.

4. y =2 riðTL4ðRWi ;RWi ðxÞÞðxÞÞ; i ¼ 1; 2; 3. We have

that y 2
T3
i¼1 TL4ðRWi ;RWi ðxÞÞðxÞ then

y 2 rbdðTL4ðRWi ;RWi ðxÞÞðxÞÞ; i ¼ 1; 2; 3. Hence,
there exists a common facet for the three
cones. Since TL4ðRWi ;RWi ðxÞÞðxÞ and
TL4ðRWj ;RWj ðxÞÞðxÞ are convex and

ri TL4ðRWi ;RWi ðxÞÞðxÞ
� �\

ri TL4ðRWj ;RWj ðxÞÞðxÞ
� �

6¼ |

for all i; j 2 f1; 2; 3g, the cones
TL4ðRWi ;RWi ðxÞÞðxÞ and TL4ðRWj ;RWj ðxÞÞðxÞ lie in
the same halfspace generated by the common
facet of the three cones. Therefore,
\3
i¼1riðTL4ðRWi ;RWi ðxÞÞðxÞÞ is not empty and

we are again in Case 1.

Now, we prove the second assertion. Let
y 2 TI4

ij
ðxÞðxÞ, then x� y 2 L5ðRWi ;RWi ðxÞÞ\

L5ðRWj ;RWj ðxÞÞ because x� TI4
ij
ðxÞðxÞ �

L5ðRWi ;RWi ðxÞÞ \ L5ðRWj ;RWj ðxÞÞ. Thus, we
have that RWkðxÞ4RWkðx� yÞ, k ¼ i; j. On the
other hand, using (b) we obtain that x =2
X*
w�parðWi;WjÞ. Hence x� y =2 X*

w�parðWi;WjÞ
and therefore X *

w�parðWi;WjÞ \ ðx� TI4
ij
ðxÞðxÞÞ

¼ |.
Since | 6¼ I5ij ðxÞ ¼ L5ðRWi ;RWi ðxÞÞ \ L5ðRWj ;

RWj ðxÞÞ � ri L 4 ðRWj ; RWj ðxÞÞð Þ \ ri L 4 ðRWj ;ð
RWj ðxÞÞÞ we have that (see Remark 5.3.2 in
Hiriart-Urruty and Lemar!eehal (1993))

TL4ðRWi ;RWi ðxÞÞðxÞ \ TL4ðRWj ;RWj ðxÞÞðxÞ ¼ TI4ij ðxÞðxÞ

and the result follows. &

Lemma 5.2

If we have that\3
i¼1

L5ðRWi ;RWi ðxÞÞ 6¼ | ð16Þ

then

ri
\3
i¼1

TL4ðRWi ;RWi ðxÞÞðxÞ

 !
6¼ |

f0g =2 ri
\3
i¼1

TL4ðRWi ;RWi ðxÞÞðxÞ

 !

Proof
First, since

T3
i¼1 TL4ðRWi ;RWi ðxÞÞðxÞ is a pointed cone

at 0 then its relative interior does not contain 0. By

Figure 3. Case
T3
i¼1 riðTL4ðRWi ;RWi ðxÞÞðxÞÞ 6¼ |.

ROBUSTNESS IN THE PARETO-SOLUTIONS 199

Copyright # 2001 John Wiley & Sons, Ltd. J. Multi-Crit. Decis. Anal. 10: 191–203 (2001)



(16) we have that
T3
i¼1 ri L4ðRWi ;RWi ðxÞÞð Þ 6¼ |

then
T3
i¼1 TL4ðRWi ;RWi ðxÞÞðxÞ ¼ TT3

i¼1
L4ðRWi ;RWi ðxÞÞ

ðxÞ

(see Hiriart-Urruty and Lemar!eechal, 1993). On the

other hand, since
T3
i¼1 L4ðRWi ;RWi ðxÞÞ �

xþ TT3

i¼1
L4ðRWi ;RWi ðxÞÞ

ðxÞ then

| 6¼
\3
i¼1

L5ðRWi ;RWi ðxÞÞ � ri
\3
i¼1

L4ðRWi ;RWi ðxÞÞ

 !

� ri xþ TT3
i¼1

L4ðRWi ;RWi ðxÞÞ
ðxÞ

0
B@

1
CA

¼ xþ ri TT3
i¼1

L4ðRWi ;RWi ðxÞÞ
ðxÞ

0
B@

1
CA

Thus, we conclude that riðTT3

i¼1
L4ðRWi ;RWi ðxÞÞ

ðxÞÞ 6¼ |

and the result follows. &

Lemma 5.3

If we have that I512 ðxÞ 6¼ | then

I512 ðxÞ \X*
w�parðW1;W2Þ 6¼ |

Proof
The set I512 ðxÞ is the set of points strictly
dominating x. That means that any y 2 I512 ðxÞ
verifies RWi ðyÞ5RWi ðxÞ; i ¼ 1; 2. Therefore,
X *
w�parðW1;W2Þ \ I512 ðxÞ 6¼ |. &

The next result shows that the 3-criterion
solution is nothing else but a kind of hull defined
by the involved bicriteria solutions.

Definition 5.1

(See Figure 4). The curve zðtÞ; t 2 ½0;1Þ with
zð0Þ ¼ x and limt!1jjzðtÞjj ¼ þ1 separates the
sets A and B, with respect to a convex cone G
pointed at x, if

(a) A;B� G.
(b) There exists no continuous curve yðtÞ �

G;8t 2 ½0; 1� with yð0Þ 2 A, yð1Þ 2 B and
verifying that fzðtÞ : t 2 ð0;þ1Þg\
fyðtÞ : t 2 ½0; 1�g ¼ |.

Let us denote X*
w�parð2Þ :¼S

i;j2f1;2;3g
i 6¼j

X*
w�parðWi;WjÞ, the union of all

bicriteria chains for three considered
criteria.

Proposition 5.1

X*
w�parðW1;W2;W3Þ ¼ encl X *

w�parð2Þ

 �

where encl X *
w�parð2Þ


 �
is the bounded region

whose boundary is X*
w�parð2Þ.

Remark 5.1

It is worth noting that the region enclðX *
w�parð2ÞÞ

is well-defined because the set X*
w�parð2Þ is

connected (see Warburton, 1983). In addition, this
region can be equivalently defined, as the set of
points such that if x 2 enclðX*

w�parð2ÞÞ\X*
w�parð2Þ

there is no continuous curve zðtÞ; t 2 ½0;1Þ with
zð0Þ ¼ x and limt!1jjzðtÞjj ¼ þ1, verifying that
zðtÞ =2 X*

w�parð2Þ; 8t 2 ½0;1Þ.

Proof
In order to prove that enclðX*

w�parð2ÞÞ �
X*
w�parðW1;W2;W3Þ, we note that X *

w�par ðWi;WjÞ
� X *

w�parðW1;W2;W3Þ 8i; j 2 f1; 2; 3g. Now as-
sume that there is a point x belonging to
enclðX *

w�parð2ÞÞ\X *
w�parð2Þ and assume that x does

not belong to X*
w�parðW1;W2;W3Þ.

Since x =2 X*
w�parðW1;W2;W3Þ we have thatT3

i¼1 L5ðRWi ;RWi ðxÞÞðxÞ 6¼ |. Then, by Lemma

5.2, x� rið
T3
i¼1 TL4ðRWi ;RWi ðxÞÞðxÞÞ 6¼ fxg. Now,

since x 2 encl X *
w�parð2Þ


 �
\X*

w�parð2Þ and x�

rið
T3
i¼1 TL4ðRWi ;RWi ðxÞÞðxÞÞ is a cone pointed at x

Figure 4. zðtÞ separates the sets A and B with respect to
the pointed cone at x.
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then

S :¼ x� ri
\3
i¼1

TL4ðRWi ;RWi ðxÞÞðxÞ

 !
\X*

w�parð2Þ 6¼ |

Let y 2 S. Since y 2 x�rið
T3
i¼1 TL4ðRWi ;RWi ðxÞÞðxÞÞ

� R2
\ð
S3
i¼1 TL4ðRWi ;RWi ðxÞÞðxÞÞ then RWi ðxÞ5

RWi ðyÞ; i ¼ 1; 2; 3. Therefore, y =2 X *
w�parðW1;W2;

W3Þ � X*
w�parð2Þ which contradicts that

y 2 X*
w�parð2Þ.

Hence, we have that

enclðX*
w�parð2ÞÞ � X *

w�parðW1;W2;W3Þ

Now, let x 2 X*
w�parðW1;W2;W3Þ. We must

prove that x 2 enclðX*
w�parð2ÞÞ.

First, if there exists i; j 2 f1; 2; 3g such that
I5ij ðxÞ ¼ | then x 2 X *

w�par ðWi;WjÞ � X*
w�parð2Þ.

Second, if we have I5ij ðxÞ 6¼ |; 8i; j 2
f1; 2; 3g, since x 2 X *

w�parðW1;W2;W3Þ thenT3
i¼1 L5ðRWi ;RWi ðxÞÞ ¼ |. Therefore, the condi-

tions of Lemmas 5.1 and 5.3 are fulfilled (see
Figure 5). This implies that

Cij :¼ I5ij ðxÞ \X *
w�parðWi;WjÞ 6¼ | ð17Þ

We must prove that there exists a chain of
efficient points for two criteria surrounding the
point x. We prove that by contradiction.

Assume that there exists a continuous curve
zðtÞ; t 2 ½0;1Þ such that (see Figure 6),

(a) zðtÞ separates the sets C12 and C13 with
respect to the cone xþ TL4ðR

W1 ;RW1 ðxÞÞðxÞ.
(b) X *

w�parð2Þ \ ðxþ TL4ðR
W1 ;RW1 ðxÞÞðxÞÞ

\fzðtÞ : t 2 ½0;1Þg ¼ |.

First of all, X* ðW1Þ � L4ðRW1 ;RW1 ðxÞÞ �
xþ TL4ðR

W1 ;RW1 ðxÞÞðxÞ. In addition, we have that,

1.

X* ðW1Þ [ C12 � X *
w�parðW1;W2Þ

� R2
\ðx� ðTL4ðR

W1 ;RW1 ðxÞÞðxÞ

\ TL4ðR
W2 ;RW2 ðxÞÞðxÞÞÞ

(by Lemma 5.1), and by Remark 5.3.2
(Hiriart-Urruty and Limar!eechal, 1993) we
also have that

TL4ðR
W1 ;RW1 ðxÞÞðxÞ \ TL4ðR

W2 ;RW2 ðxÞÞðxÞ

¼ TI4
12
ðxÞðxÞ:

2. X* ðW1Þ [ C13 � X *
w�parðW1;W3Þ �

R2
\ x� TI4

13
ðxÞðxÞ

� �
(by Lemma 5.1).

This means that X*
w�parðW1;W2Þ and X *

w�par

ðW1;W3Þ cannot cross x� TI4
12
ðxÞðxÞ and

x� TI4
13
ðxÞðxÞ, respectively. On the other hand, we

know that both X*
w�parðW1;W2Þ and X*

w�parðW1;
W3Þ are connected sets containing X* ðW1Þ. Then,
three cases can occur:

1. X* ðW1Þ is separated from C12 by zðtÞ then
X*
w�parðW1;W2Þ \ fzðtÞ : t 2 ½0;1Þg 6¼ |.

2. X* ðW1Þ is separated from C13 by zðtÞ then
X*
w�parðW1;W3Þ \ fzðtÞ : t 2 ½0;1Þg 6¼ |.

3. X* ðW1Þ \ fzðtÞ : t 2 ½0;1Þg 6¼ |.Figure 5. Case x 2 X*
w�parðW1;W2;W3Þ\X*

w�parð2Þ.

Figure 6. zðtÞ separates the sets C12 and C13 with
respect to the cone xþ TL4ðR

W1 ;RW1 ðxÞÞðxÞ.
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Therefore, all of these three cases contradict the
initial hypothesis.

We can use the same arguments with C12 and
C23 as well as with C13 and C23 to obtain that the
point x belongs to the region surrounded by the set
of weakly efficient points for each of the two
functions. &

As a direct consequence of the results of this
section we get the following algorithm.

Algorithm 5.1

Input:
1. Demand points A� R2.
2. Weight sets Wi ¼ ðwiaÞa2A; i ¼ 1; . . . ;Q.

Output:
1. X*

w�parðW1; . . . ;WQÞ .

Steps
1. Computation of the set X*

parðWi;WjÞ 8i5j 2
1; 2; 3

2. Compute for all i; j; k 2 f1; . . . ;QgX *
w�par

ðWi;Wj ;WkÞ using Proposition 5.1.
3. Compute

X*
parðW1; . . . ;WQÞ ¼

S
i;j;kX

*
w�parðWi;Wj ;WkÞ.

4. END &

Example 5.1

We use the data of Example 4.1 and add two
additional existing facilities a17 ¼ ð14; 12Þ and
a18 ¼ ð15; 13Þ.

Now we have three decision makers, each of
them having two sets of weights:

W1 ¼ fw11;w12g with

* w11¼ð1; 1; 1; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ
and

* w12¼ð0; 0; 0; 0; 1; 1; 1; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ;

W2 ¼ fw21;w22g with

* w21¼ð0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1; 0; 0; 0; 0; 0; 0Þ
and

* w22¼ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1; 0; 0Þ.

W3 ¼ fw31;w32g with

* w31¼ð1; 1; 1; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ
and

* w32¼ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1Þ.

According to the results of this section, we
compute the Pareto chain for all three bicriteria
subproblems X*

parðW1;W2Þ, X*
parðW1;W3Þ,

X*
parðW2;W3Þ. The result is shown in Figure 7.

Note that according to the results obtained also
the marked enclosed region is Pareto optimal.

The algorithms in this paper are implemented
with LOLA (Hamacher et al., 2000) and the
program code is available upon request from
lola@itwm.fhg.de.

6. CONCLUSIONS

In this paper, we have shown how to derive an
efficient algorithm for a robustness concept in
multi-criteria location. An emphasis was put on
the geometrical structure of this multi-criteria
model. Extensions to higher dimensions, to other
distance measures and to more general objective
functions seem to be natural and are currently
under research.
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